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An iterative algorithm is described for solving boundary-value inverse problems in thermal conduction by 
steepest descent, which utilizes information on the smoothness of  the solution. 

Gradient minimization methods are highly efficient in solving inverse problems in thermal conduction [ 1, 2]. This 
concerns algorithms that provide mean-square convergence to the solution. An algorithm has been suggested [3] that pro- 
vides uniform convergence, but in order to use this one needs to know the value of the desired function at one of  the 
points in the observation interval. 

Here we provide a generalization of  these algorithms as a way of producing solutions that does not require quanti- 
tative a priori information about the solution. 

The boundary-value problem involves solving an equation of  the first kind: 

Au =/~8, (1) 

where A : U = L~ [0, ~m]---~ Lo. [0, ~ ]  = F is a linear continuous operator that specifies the dependence of the the.rmal 
conditions within the body on the unknown boundary condition; f~ = f + f ,  where f is the exact right side and f is  the 

noise, while [[T/!L, = 6; the inverse operator A -1 as a rule is unbounded. 

We assume that it is known that the solution u to (1) on the exact data f- belongs to the space U0 -= W~ [0, ~ ]  c U 
(the k-th general derivative exists). In that case we can transfer to the equivalent problem of determining the k-th derivative of  
the solution and k constants, which are values of  the solution and of the derivatives at certain points in the interval of 
observation, where the resulting approximations will have the required smoothness. To perform the conversion we introduce 

h 

an auxiliary space G=Lo. [0, xm] • R h with the elements g = {v, c~ . . . . .  ch} and norm L~lr a ~ivii)_. § . 9~c~, where 
i = l  

v(z) = u( h~ (~), c~ = u (~-1) (x), and Pi are weights that incorporate the effects of each of  the constants c i. 

The function u E U0 is defined from g in a unique fashion by means of the linear compact operator L: G -+ U o : 

t ~ h k 

t t  t" h i ~ l  i ~ l  
t "C 

where % (t) =- t' " �9 �9 i' d~dx are polynomials of  degree i - 1 and ~01 (t) = 1 ; in order to determine u unambiguously, the 
t'l t i__ 1 

constants c i may be found in other ways, but this will influence only the form of ~'i" 

Instead of  (1) we solve the equivalent equation 

B g : f r ,  B = A L .  (2) 

The sequence in the steepest-descent method for (2) takes the form 

r, 2 
ItJ g~/a (3) 

IJBJ g~lfl, 
where B* = L ' A *  is an operator conjugate to operator B and J (g) = @ IIBg--  fr]l~, is the discrepancy functional. 

We apply L to both parts of  (3) to obtain the transform in space U and to define at once the approximations u n to 
u without reference to the gn: 
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u~+l = u,~ - -  [~nLJ' g,, = un - -  [I,~LL* A* ( Aun - -  fs), 

IlL*A* (Au,~ - -  {6)[/~ 
[5,~ = IIALL*A* (Au,~ - -  f~)il~ " 

uo = Lgo, 

(4) 

The iteration of (4) is halted by reference to the discrepancy, i.e., from the condition IIAun - -  f611L, ~ 6 .  

The value of  A is calculated from the solution to the conjugate problem for the equation of thermal conduction 
[4]; we derive an expression for L. From the definition of the conjugate operator,  

(u, Lg)L , = ( L - u ,  g ) a = ( g * '  g)a' v u E U ,  gEG, 

we have 

where 

Therefore, we have 

h ~r~ 

(u, Lg)L.= ~_~ Ci(U, CPl)L, + , f  u(t) i "'" (v(~.)d~d~ . . .  dt .= 

k t t x 

i ~ l  t a t~ t k 

0 t l  t's t k i = l  

i 
ra  t ~ k 

0 t2 t h i = 1  

,~m h im + t v(t) L* . . .  L* ,dr = (L 'u ,  g)c = ~ ,  W : ?  + vv*dt, 
b i=I b 

!.t! mz(1:) dT, t 7> t~, 

L*z  = ],' z (~) t < 
t d% If. 

(o 

L ' u =  (~L* . . .  L~u, (u, %)L, , 
( 9t 

(u, rpk)L ' 

Oh }" 

Then the sequence of (4) takes the form 

u~+, = u~-- ~ [ (A* (Au~--Oi h), %)L2 +_ ' . . .  (L~ . . .  

i = l  t l  t h 

. . .  L~ A* (Au n -  f6)) d~d'~ . . .] , 

u o = Lg o. 

Transfer to the auxiliary problem of  (2) is necessary in order to choose the direction of  descent in the initial space 
U, since this must not cause the sequence to deviate from set U o that  contains the solution u to ( I )  on the exact data. 
The initial approximation u o should belong to Uo, and in particular we can take u o 09 = 0. 

Complete use of  the information on the smoothness improves the approximations considerably; a previous method 
[1] of steepest descent for (1) involved choosing the halt number  N(6) from the discrepancy, which gave mean-square 
convergence. This fact is not  proved here, but numerous model  examples and certain theoretical studies [5, 6] point  to 
this conclusion. On the other hand, this algorithm is that  of  (3) for the auxiliary problem. Therefore, we can assume that 
the solutions gN(8) to the auxiliary problem will converge to g = L'iu- for ~ ~ 0 in the norm of  space G. As L is continuous 
in the mapping from L 2 [0, r m ] into C k [0, r m ], we have uniform convergence of  the transformsu~v(~)=Lgn(~)to u with their 

derivatives up to order k - 1 inclusive. This conclusion is confirmed by calculations on model  examples. The result from 
one calculation is given below. 
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Fig. 1. Recovery of  a heat-flux density (q is heat flux in 
106 W/m 2 and z is time in sec): 1) exact solution; 2) flux 
recovered from exact data; 3) the same from corrupted data 
(the perturbations are uniformly distributed with a maximum 
spread of  10% of  the maximum value of  the exact data). 

This algorithm is particularly effective if  one has a priori information on the values of  the solution or of the deriva- 
tives at some points in the interval of observation, e.g., values of  the temperature of the heated surface at the start, the 
positions of  turning points, or those of  points of  inflection. In that case, some of  the constants c i are known, and the 
corresponding functions ~oj may be put  as zero, which reduces the volume of  computat ion and improves the approximation.  
The initial approximation should be chosen from the same class as the desired solution, e.g., u0=Ycj~j, where the summation 

i is carried over the known constants cj. 

As a model  example we consider recovery of  the heat flux to a thermally insulated rod with constant thermophysical 
characteristics by reference to measurement of  the temperature at the internal end. This involves solving an integral equation 
of the first kind: 

.i. K( '~ - -  ~) q(~) d~ = Ts(x), (5) 
0 

where q(~) is the heat flux and T~ (r) is the measured temperature. It is assumed that q(~) has a piecewise-continuous first 
derivative. The value q(0) is taken as the unknown constant c. The sequence of  (4) for this case takes the form 

TITt 

0 

O t  g 

0 0 x 

where 
T 

0 

Figure 1 shows the results. 

The weights Pi should be chosen such that the effects on the function from each of  the unknown constants c i and 
derivative v- should be approximately the same, i.e., the norms of the transformations for each of  the c i and v should be 
consistent. The norm of  the C i t ransformation is K i = I[r i [Iw/f~i, while that for the v transformation isKo = !lLoI! and then 

Pi may be chosen, for example,  from the condit ion K i = (1/i)Ko, and in that case Pi = i2 [I ~0i [IF [[[Lo 112" In our model example, 

II ~0ll~ = rm, IlL o II = rm/4~ ,  and therefore p = 2/r  m . 

Calculations on model  examples show that the choice of  the Pi substantially influences the convergence rate in the 
algorithm, but  the rate is acceptable if the Pi are chosen from the condit ion for consistency of  the transformation norms. 

Similar arguments allow one to construct an algorithm for the conjugate-gradient method,  which is of  somewhat 
higher performance with virtually the same run time. 
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NOTATION 

A, B, linear operators; u, dement of solution space U; f ,  exact reference data; f, reference data uncertainty; 6, 
value of reference data uncertainty; A -1, inverse operator; u(k)(r), k-th derivative of function u; rm, length of observation 
interval; ~0i(t) , polynomials of degree i ,  1 ; A*, B*, L*, operators conjugate to the operators A, B, L; J'g, discrepancy 
functional gradient; fin, descent step along the discrepancy antigradient for the n-th iteration; K(r - ~), kernel of integral 
equation; q(r), heat flux; T~(r), measured temperature inside body. 
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OPTIMAL CHOICE OF DESCENT STEPS IN GRADIENT METHODS 

OF SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS 

E. A. Artyukhin and S. V. Rumyantsev UDC 536.24.02 

Modifications are proposed for the methods of steepest descent and conjugate gradients for the solution of multi- 
parameter inverse problems in heat conduction. 

In the solution of inverse heat-conduction problems it often becomes necessary to determine several independent 
functions and parameters at once. Such multiparameter problems arise in the solution of coefficient-type inverse problems, 
in the joint determination of the external thermal load and some thermophysical characteristics of the body, etc. An 
attempt to take the most complete account of the a priori information about the desired solution may also lead to such 
problems. 

In the solution of boundary-value inverse problems with one unknown (a function or a parameter) it has been found 
very effective to use algorithms based on gradient methods of minimization [ 1-3]. The use of these methods in a case when 
it is necessary to determine several independent variables is made more difficult by the fact that the descent step is chosen 
to be the same for all components of the direction of descent. Such a method of choosing the step frequently leads to very 
slow convergence of the gradient methods. The convergence may be speeded up considerably by choosing different descent 
steps for the different components of the gradient of the minimizing functional, i.e., to determine not one step but a vector 
of steps from the condition that the target functional has a minimum with respect to this vector at each iteration. 

We shall show how this method can be used for constructing gradient algorithms for the solution of boundary-value 
inverse problems in heat conduction when a priori information concerning the smoothness of the desired solution is available. 

A boundary-value inverse heat-conduction problem for bodies with constant thermophysical characteristics can be 
reduced to the solution of the first-order equation 

Au=f~, uEU, [6EF, (1) 
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